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In this paper, a conservative difference scheme for generalized nonlinear Schrédinger equa-
tions is given. We apply multigrid method and adaptive algorithm to solve the equations.
Numerical results are presented and compared. They demonstrate that the multigrid and
adaptive algorithm are efficient and can considerably relax the restrict on step size of time,
which is caused by nonlinear iteration.  © 1990 Academic Press, Inc.

1. INTRODUCTION

In order to ensure computational stability, we often employ unconditionally
stable implicit schemes for nonlinear differential equations. The schemes are
nonlinear algebraic equations, which always are solved by means of iterative
algorithms. The nonlinear iterative algorithms require more computing time and
their iterative convergence depends on step size of time. Thus, the step size of time
1s restricted, though unconditionally stable schemes are used.

Multigrid method can efficiently solve the algebraic equations arising in discretiz-
ing boundary-value problem and enormously reduce the amount of computational
work. Adaptive algorithm is useful for problems in which different scales of
discretization are needed in different parts of the domain [3, 4].

In this paper, we consider application of multigrid and adaptive algorithm to
nonlinear Schrodinger (NLS) equation. Conservative difference scheme for the NLS
equation has been given in [1,2]. This is a nonlinear algebraic equations. By
means of theoretical analysis and test computation, a multigrid procedure for
solving the NLS equation is presented. The NLS equation possesses soliton
solution, which is located at a small region. Therefore, the adaptive algorithm can
be efficiently employed in solving the NLS equation. In view of Brandt’s idea
[3, 6], we deduce a formula on relation between truncation error t* and quantity
1%, 1> which is computed in the multigrid procedure. The quantity t%, , is used in
grid adaptiation.

Numerical results of applying the multigrid and adaptive algorithm are given and
compared with ones of iterative method. In previous papers, it has been discussed
that the muitigrid method can decrease the amount of computational work and
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MULTIGRID AND ADAPTIVE OF NLS 363
save CPU time. But, our computational results demonstrate the iteration of the

multigrid method also can relax the restrict on the step size of time, which is given
by nonlinear iteration.

2. DirFERENTIAL EQUATION AND DIFFERENCE SCHEME

We consider the following initial-boundary value problem of generalized NLS
equation

iu,—aA( gg+ﬁ x) g(lu*)u+ F(x, f)u
= G(x, t), >0, x, <x<Xxpg, 2.1)
u,_,, =0, u,._.,.=0, >0 (2.2)
ul,_ o =uy(x), X, <x<Xpg, (2.3)

where u(x, 1) is an unknown complex functional vector, A(x)=(a,,(x))p s 15
real diagonal matrix, F= (f},.(x, 1))srxs 15 @ symmetrical real matrix, f(x) and
g(s) are real functions, uy(x) and G(x, t) are complex vectors.

It is easy to obtain two conservation laws of the problem (2.1)-(2.3), namely,

lu(x, D12, = lu(x, 0)II2, +2 j Im(G(x, 1), u(x, 1)) d, (2.4)
4]
and
(400 L BT 4 (g, Q(pucx. %)
X X
du(x, 0) du(x,0 )
(00 T2, S e, QClut. 1)
M M : a
iy Z J <f,m(x 7) Re[a (u,(x,7)-u (x,r)):|>dr
=1 =
+2Re j (G(x, o), M) &, (2.5)
0 0t
where inner product (f(x, 1), g(x, 1)) = mqj:ff x,1)-g.(x, 1)dx and Q(s)
ff)q(z)dz.

The problem (2 1)-(2.3) can be approximated by conservation difference scheme
( n+‘)t { m1+l/2[( +1) +(u ]}‘6

§ n+1y2 I "Iz) n+l n+ 1 n+ 1 n
+%Q(ITU"+[||) |Qll("|u u,n,j )+ Z fmll/2 u/I +u/v/)

=GIH2 I<mSM < j<I—1,n=0,1, ., (26)

. k4
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uho=up,=0, 1<m<M, n=01,., (2.7)
W, =up (X)),  l<m<M, 1<j<J—1, (2.8)
where
fr—f i l—f"
Pe=="—— (= ’*h

h=(xg~—x,)/J and 1 are the step sizes of space and time, respectively.
The following theorems have been proved in [2, Theorems 1-4].

THEOREM 1. Suppose that |f,, (x, t)] <

O o i(x, 1) <. 0G ,.(x, 1)
ot =T ot

~ C)
Ly

U mix)e Hi[x,, xp], 1<m, IS M, ¢q(s)e C'[0, 00), and assume that one of the
Sfollowing conditions are satisfied

(i) 0<c;<a,,(x)<e, 0<P(x)<, O(s) 20, se [0, 0);

(i) O<ey€a,(x)<ec or 0<ee€ —a,,(x)<ce, [B(x)<e, |9'(s) <e,
se[0, w0);

(i) O0<ey<a,,(x)<cor0<ey< —a,(x)<e, |f(x)|<c, g(s)=s7,0< p<2,

where ¢, and c are positive constants. Then the scheme (2.6)-(2.8) is stable in L,
norm for initial values.

THEOREM 2. Suppose that the conditions of Theorem | are satisfied, and assume
that for the solution of problem (2.1)—(2.3), u(x, t)e ¢, a,(x)ec>. Then the solu-
tion u,, of the difference problem (2.6)—(2.8) converges to the solution u of the problem
(2.1)+(2.3) in L, norm and |ju—u,|,,= O(1* + h*).

THEOREM 3. Assume the conditions of Theorem | are satisfied, and u, ,(x)e H>.
Then there exists the generalized solution of the problem (2.1)~(2.3) and it is unique.

If the condition
(iv) 0<c¢o< —a,(x)<c, 0< —B(x)<c, Q(s) 20, s€ [0, ),

is satisfied instead of conditions (i), (ii), (iii) in Theorems 1, 2, and 3, then these
theorems can still be obtained by means of the proof idea given in [2].
The scheme (2.6)-(2.8) possesses discrete conservation laws:

h Z Z |un+l

m=1 ;=1
n M s—1

{i W PR Y Y Y Im[GE @ 1k )] (29)

k=0 m=1,;=1

u[\’li
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and
J—1

— J—1
Z A 12 |52+ R 2 Boyt!

i=1

Py

M J-—1 J—1
=h ) Y Guiplun)P+h X B07
m=1 j=0 ji=1

n M

M J-1
—h Y XX X Sun) Re(ui a5

k=0 m=1/=1j=1

+2.Re ¥ Z Z GhFVAaE ), (2.10)

k=0 m=1 j=1

Comparing (2.9) and (2.10) with (2.4) and (2.5), we know that the difference
scheme (2.6)—(2.8) keeps two conservation laws that the differential problem
(2.1)-(2.3) possesses.

Nonlinear iterative algorithms for the scheme (2.6)-(2.8) are discussed in [1, 2].
It has been proved that when t < const A% a=1 or 2, the iterative algorithms are
convergent.

3. APPLICATION OF THE MULTIGRID METHOD

We shall now consider the application of the multigrid method to an initial-
boundary value problem of basic NLS equation

U +2uu=0, >0, x,<x<xg, (3.1)
Uliorxyy  Uleory=0, >0, (3.2)
ul,mo=uo(x), X <x<Xxp, (3.3)

The conservation difference scheme that approximates (3.1)-(3.3) may be written as

Au j”:f%—B"+1 "“+Au"+1 Fj’.'+‘=0, 1< j<J—1,n=0,1,.., (34)
ug=u}=0, n=01, .., (3.5)
uf=u0(xj), 1<j<J-1L (3.6)
where
A=
T

Bn+1__l_ﬁ+ (lun+1|2+|un| )

b (] T n n n
F;H'l:luj—m( 71— 2uf +u171)——(|uj+1|2+|uj|2)uj. (3.7)

581/88/2-8
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They are obviously nonlinear algebraic equations and are solved by full-
approximation scheme (FAS) of the multigrid method [3, 6].
Now, we consider a brief description of the FAS mode applied to the equation

LU=, in Q.
Its approximation solution u* on the finest grid Q* satisfies
LMUM =G™, in QM. (3.8)

Assume that the grid 2%+ is finer than the grid 2% and the ratio of their step size
is hyg, 1 /hx=1/2. In the FAS mode, the U* satisfies the modified equation

LXUK=G¥,  in QX (3.9)

where
GF=LNIK, U +Ik, (GF' =L 'UsHY),  K=0,1,.,M—1,
G"=GM.
Let

Tho 1 =LA g UK =T (LY URT Y, (3.10)
then

GK=1%,,GK* " +1X, | K=0,1,.,M—1,

GM=GM

where 7%, | and I§*" denote restriction and interpolation operators, respectively.
In interpolating correction to the finer grid, the formula is

UK+ 1new) _ UK+1(old)+1§+l(UK_1§+lUK“(O"”), (3.11)

A flow chart of FAS mode is given in Fig. 1.
In view of theoretical analysis and numerical computation, we choose that the
restriction operator is

Uf=(%, U Y,=U5"! (3.12)

7

and interpolation operators are written as

UK+ = (I5+1U%), = U¥, (3.13)
UK+1_ 1K+1UK — 25 UK UK 5 UK UK
2j+1_( K )2j+1_I-Z§( j+ j+1)_%( j_1+ j+2)

3 .
+E(U}‘_2+Uf+3), 2<j<J-3, (3.14)
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FiG. 1. Flow chart for FAS mode.

The following interpolation formulas are used near the left boundary:
UK = {US+ UT - KU+ U, (3.15)
Ukt = (UK + UX — LUK+ UX). (3.16)

The interpolation formulas near the right boundary are similar to (3.15) and (3.16).
Considering that 7 is a small quantity and |B:*!| 224, a Seidel-type iterative
formula is employed

n+1(s) n+1(s) __ n+1(s+1)

iy —Auy " — Aupty w10 _ (3.17)

7 - B+ 1) ’ 7 — T )
J

By means of linearization of Eq.(3.17), a convergence factor is approximately
obtained

Aeiﬂ
B+ A4e~ "

s

u(9)=‘

where B~ B * ' = —1/h% Let a =2h%/t, we have

1
_\/5+a2—2asin9—4cos0

u(0)
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and smoothing factor
f= max p(f)=——.
n2<<n 44 (x—1)>2

Its values are given in Table L.
The multigrid method is applied to the problem (3.1)-(3.3) subject to the
following conditions:

(i) One-soliton solution

uy(x) = Sech(x + 10) - exp(2i(x + 10)),

(3.18)
x; = —16, Xgp=16;
(ii) Collision of two solitons, which move in the opposite direction
o(x) = Sech(x + 10) - exp(2i(x + 10) + Sech(x — 10) - exp( —2i(x — 10)),
x, = —16, xp=16; (3.19)
(iii) Collision of two solitons, which move in the same direction
2 1 2
uo(x) = Sech i x) -exp (— ix) + Sech <£ (x—25)
2 2 2
ex i i(x —25)
Pl2o"™ ’
x, = —20, xg=80. (3.20)
In computation, we use the conservation scheme (3.4)-(3.6) and require that the
iterative error E=max;|u] "D —u7* 1 <107° in every step of time. The

soliton solutions are computed from =0 to t=T on the Micro Vax Il computer.
We take that #=0.1, 7=0.01, 0.02, 0.05, 0.1, 0.2, and 0.5, T=5 for the case (i);
h=0.1, 1=0.01, 0.02, 0.05, 0.1, and 0.2, T=5 for the case (ii); and A=0.25,
7=0.0625, 0.125, and 0.25, T =45 for the case (iii), respectively. The computational
results are given in the Tables II-IV.

TABLE 1

Values of the Smoothing Factor

T h o i
0.01 0.1 20 0.4472
0.02 0.1 1.0 0.5000
0.05 0.1 0.4 0.4789

0.1 0.1 0.2 0.4642
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TABLE II

Numerical Results for One-Soliton Solution

Method 0.01 0.02 0.05 0.1 0.2 0.5
Seidel-type Number of 13 41 385 D D D
iteration iterations
CPU time 32min 19s 39 min42s — — — —
Multigrid Number of 2 3 3 3 3 3
method levels in the
multigrid
Number of 1 2 3 34 34 D
iterations
CPU time 18 min 18 s 16 min 19s 10 min 35s 4 min 49s —

Note. “D” denotes divergent.

4. APPLICATION OF THE ADAPTIVE ALGORITHM

It is obvious that special refinement of the grid is required near wave crest of the
soliton and the coarser grid can be used in other parts of the domain. Therefore,
it is valuable to consider adaptive algorithm at the base of the multigrid method.

An important feature of the adaptive algorithm is adaptivity. The grid may
change during the solution process, adapting itself to the evolving solution. The key
of the algorithm is how to choose the domain requiring local refinement of the grid.

TABLE HI

Numerical Results for Collision of Two Solitons
Which Move in Opposite Directions

T

Method 0.01 0.02 0.05 0.1 02
Seidel-type Number of 13-22 64-200 D D D
iteration iterations
CPU time 34 min 39 s — — — —
Multigrid Number of 3 3 3 3 3
method levels in the
multigrid
Number of 1~2 2 3 3-10 D
iterations

CPU time 19min59s 17minlls 11min26s 6minSls —
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TABLE 1V

Numerical Results for Collision of Two
Solitons Which Move in the Same Direction

0.0625 0.125 0.25
Method
Seidel-type Number of 15-18 D D
iteration iterations
CPU time 1hOmin36s — —
Multigrid Number of 2 3 3
method levels in the
multigrid
Number of 3 4-8 D
iterations
CPU time 32min 24s 25 min 27 s —

In general, truncation error can represent error of the solution. The bigger the
truncation error, the bigger is the solution error. Hence, the domains requiring
local refinement of grid are chosen by means of the truncation error, which is
defined as

1X= LX(TKU) - I*(LU), (4.1)

where L is the differential operator, LX is the difference operator on the grid 2%,
U is the true differential solution, and /¥ and I*X are two continuum-to-grid QX
projection operators.

In view of Egs. (3.9) and (3.10) of FAS mode, we have

LKUX=IK, G**' +1K, |, K=0,1,.,M—1,

o LMUM = GM, (42)
Assume that the operators /X and I* possess properties
I8 15 1=1% K K=K (4.3)
and
FH'y=ur+, (4.4)

when the difference solution U* converges to the differential solution U. Thus, it
follows from (4.1) that

I§+ITK+1=I§+1LK+1UK+1_IK(LU)

=I§+1LK+1UK+1—LK(iKU)+TK= —T§+1+TK;
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ie.,
8, =K =Tk, T (4.5)
Making Taylor’s expansion, we obtain, from (4.1),
™ =cX(x) -h2+ O(hET"), (4.6)

where ¢X(x) is independent of h,. Let &, =2h, ., as a general rule; then it follows
from (4.5) that

K =CRx)he—TIK,  CK  (x)hE,  +OhE* ).
It is easy that 7%, | is chosen to satisfy

IX  CKH 1 (x)=CX(x) + O(hg).

We have
X =CRx)hE—cK(x)hE,  + OhE™ ) =CXx)[1— (3?1 hE+ O(RETY).  (47)
Combining (4.6) with (4.7) yields

tX=2r27 1)tk + O(hETY). (4.8)
Therefore, the quantity t%,, is proportional to the truncation error *. We
can choose the domains requiring local refinement of the grid by means of the
quantity t%, ;. This adaptive algorithm at the base of the multigrid is efficient and
economical.

Using the difference scheme (3.4)-(3.7) and the restriction operator (3.12), we
obtain

(LXUX),= a%uf | + Bfuf + A%uf |,
(LKIIIEH“IH1),/‘=AK(I§+1“K+1)j+1 +B,K(I§+1”K+l)j+AK(I§+1uK+l)jfl
=A%ty + Bfuf !+ AKUS ),
[1§+1(LK+IMK+1)]j=(LK+luK+1)2j
=AK+1u§j:11+B§-+lug+l+AK+lu§jti.
Thus, it follows from the formula (3.10) that

(Thor )y =A%yl +u5™s)

— AR st —ul )+ (BF =By ) ul !

_ gqK+1g1 K+1 1L, K+1 _ K+1 __  K+1
= AT Guy o+ auyly—uyl —uy )

T T
K+1
+(—4h2 M )“”
K+1 K+1
_ 4K+l K+l 1o K+t K+l K41 3 K+l
=4 (4u2j+2+4u2j—2 Upiypy — Uyt 35U ).

The quantity t% , , is linear, although the difference scheme (3.4)-(3.7) is nonlinear.
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TABLE V

Numerical Results of the Adaptive Algorithm
for One-Soliton Solution

Method 0.01 0.02 0.05 0.1
Adaptive 7 min 53 s 6 min 24 s 4min 16 s 3min49s
algorithm
Multigrid 18 min 18 s 16 min 19 s 10 min 45 s 5min 35s
method

Using the adaptive algorithm, one-soliton solutions for the NLS equations
(3.1)-(3.3) are computed. We take x, = —16, xg=16, T=35, h=0.1, 1=0.01, 0.02,
0.05, and 0.1. At first, the approximation solution in the interval [ —16, 16] is
computed by the multigrid of two levels, in which step sizes of space are h; =04
and h,=0.2. In this process, values of the quantity 7, are stored. Then, maximum
value (r3), = max;(t;); is chosen and domain Q*, where (13),> 0.1 - (z5),, is found.
Computational experience shows that j, is at wave crest and the domain £* is only
a interval j, €< j<j,. In order to ensure soliton is symmetrical on j,, we adjust
the domain Q* to domain Q¢ which is a interval j,—A4j<j<jo+4j,
Aj=max(j,— J;, j»— jo)- Finally, the approximation solution is computed by the
multigrid in step size h, = 0.1 and h,=0.2 at the domain Q*. The results are given
in Table V. In view of experience, we know that the domain Q¢ is about the one
fifth of the interval [ — 16, 16] and moves with the soliton.

5. DiscussioN OF COMPUTATIONAL RESULTS

(1) We know that convergence of nonlinear iteration requires too small step
size of time 7 in computation, when nonlinear evolution equation is solved by
implicit scheme. For example, the number of iterations in 7 < 0.05 increases sharply
with increments of the step size of time 7 and iteration process is divergent for
7> 0.05, when one-soliton solution of NLS equation is computed. Qur computa-
tional results demonstrate a new advantage of the multigrid method: it can
considerably relax the restrict on step size of time, which is given by nonlinear
iteration. For example, the Seidel-type iteration method is convergent only for
7 =0.05. But, iteration process of the multigrid method still is convergent for 1 =0.2
and CPU time is only 4 min49s in computing the one-soliton solution. This
advantage can encourage the multigrid method to be applied more widely.

(2) We know from the computational results that the adaptive algorithm
may combine conveniently with the multigrid method and local refinement of the
grid can be chosen by the quantity t%, . For example, the adaptive algorithm for
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one-soliton solution and t=0.05 decreases CPU time from 10 min 45s, which is
taken by the multigrid method, to 4 min 16 s and the refined domain is one-fifth of
the interval [ —16, 16]. This means that the adaptive algorithm is suitable and
efficient.

(3) The interpolation operator /5+' is important for the multigrid method.
We try to take various forms of the operator and compare them. When the order
of the operator is less than six, the correction on the coarser grid cannot be trans-
mitted to the finest grid, and the iterative error on the finest grid cannot be
decreased to less than 1073, When the order of the operator is too large, there are
added components of high frequencies of the error in the finer grids that increase
the number of the iteration. We also consider to take cubic splines as the operator.
Thus, smooth correction can be obtained with the finer grid. But, computational
experience demonstrates that this does not decrease the number of iteration and
may increase CPU time, since complication of computing cubic spline functions.
The formulas (3.12)-(3.16) are suitable for the NLS equation in view of our
experience. ‘

(4) We consider computational accuracy in various step sizes of time. Let a
and v denote maximum amplitude and speed of the soliton, respectively. Their
numerical results are given in Tables VI and VII for cases (i) and (ii), respectively.

It follows from (2.4) and (2.5) that there are two conserved quantities in basic
NLS equations (3.1)-(3.3). They are

xR
f |u(x, 1)|? dx = const.,

[ (|u(x, .

xp

oulx, 1)
Ox

2
) dx = const.

TABLE VI

Computational Results of Amplitude and Speed
of the Soliton for Casr (ii)

p 0.01 0.02 0.05 0.1 0.2
1 a 1.008 1.013 1.023 1.057 1.024
v 4.000 4.000 4.000 3.900 3.700
2 a 1.016 1.019 1.033 1.094 1.075
v 4.000 4.000 4.000 3.900 3.650
3 a 1.009 1.014 1.026 1.086 1.093
4.000 4.000 3.950 3.850 3.650
4 a 1.007 1.010 1.021 1.064 1.051
v 4.000 3.950 3.950 3.800 3.600
5 a 1.005 1.007 1.018 1.045 0.982

v 4.000 3950 3950 3.750 3.400
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TABLE VII

Computational Results of Amplitude and Speed
of the Solitons for Case (ii)

4 0.01 0.05

t First soliton Second soliton First soliton Second soliton
1 a 1.009 1.009 1.023 1.023
v 4.000 4.000 4.000 4.000
2 a 1.005 1.005 1.029 1.029
v 4.000 4.000 4.000 4.000
2.5 a 2.045 2.045 2.080 2.080
v 4.000 4.000 4.000 4.000
3 a 0.9992 0.9992 1.033 1.033
4.000 4.000 4.000 4.000
4 a 1.010 1.010 1.026 1.026
4.000 4.000 4.000 4.000
5 a 1.005 1.005 1.014 1.014
v 4.000 4.000 4.000 4.000

Errors of the conserved quantities are denoted by p, and p,; ie.,

plz“h_‘ho
910

42— 4

s D=
: 2

k]

where ¢, and ¢, are exact values of {3 [u|* dx and [3* (Ju|* — |0u/0x|) dx, Tespec-
tively, and ¢, and ¢, are the calculated values of the quantities. It follows from the
computational results that p, and p, are very small for t1<0.1. For example, in
computation of one-soliton solution there are

P, <0000,  p,<0005, for 7=001;
p, <0004,  p,<001,  for t=0.05

In view of the Tables VI, VII and the values of p, and p,, we can find that it is bet-
ter to take t=0.05 for the case (i) and (ii), and comparison of CPU times of
various algorithms are given in Table VIII. The results for the case (i) and r =0.05
is drawn in Fig. 2.

Theorefore, the multigrid method is efficient for solving the nonlinear evolution
equation and the adaptive algorithm can combine with the multigrid method for
the problem.

Comparing the adaptive solution with the solution of the multigrid method, we
know that the difference between them is less than 10 ~°. This result is satisfactory,
because the iterative error E also is less than 10 2.



MULTIGRID AND ADAPTIVE OF NLS 375

TABLE VIII
Comparison of CPU Time for Cases (i) and (ii)

Seidel-type Multigrid Adaptive

Case iteration method algorithm

(1) 32min 19s 10 min 45 s 4 min 16 s
(11) 34 min 29 s 11 min29s e

Note. 1=0.01 for Seidel-type iteration and 1 =0.05 for other methods.

(5) We try to use a greater number of levels and coarser grid in the multigrid
method. The results for the one-soliton solution, 7=0.5 and t =5, are given in
Table IX. Other results indicate a similar property. The computational results show
that the multigrid procedure presented in this paper is convergent for a greater
number of levels and coarser grid. But, the coarsest grid should be fine enough to
provide rough approximation.

(6) In order to compare CPU time between the multigrid method and the
Seidel-type iteration, we require that E=max; [uf*'¢+D /19 <1077 It is
possible that the actual error is smaller in the multigrid than in the Seidel-type,

because in the latter the convergence is much slower than in the former. Therefore,
we consider two criteria of convengence in the multigrid

En+1 =max |u;z+1(s+1)_u;r+l(s)| < 10—5
J

and

Ey ' =max |u 10D —u¥ <1077,
ax

1.10 LINL IR L I I O
—_

X-AXIS

FiG. 2. Soliton solution for the case (i) and the 7= 0.005.
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TABLE IX

Comparison of Various Number of Levels
for One-Soliton Solution, t=0.5 and T=S5

Number of levels

in the multigrid 2 3 4 5 6
Number of iterations 3 3 3 34 44
CPU time 11 min29s 10 min45s 10 min 54 s 12min 44 s 13 min 37 s

where u* denotes value on the finest grid before Seidel-type iteration which is to
smooth error out in the multigrid. The values E”*' and E}*' for one-soliton solu-
tion and t=0.05 are given in Table X. It follows from the Table X that the error
E"+!is slight smaller than E, """, when they are less than 10~°. Therefore, we can
use E"*!'<107° rough to compare CPU time between the multigrid and the
Seidel-type iteration.

APPENDIX: UNIQUENESS AND CONVERGENCE
OF THE NONLINEAR ITERATION (3.17)

In this section, we consider the difference scheme (3.4)-(3.7) and the Seidel-type
iteration (3.17). We use the notations

j=1

J—1 J—1
> =h 3 lufl® uilP=h Y @))%
j=0

l"l o= sup |u]].
1<j<s-1

TABLE X

Values £"*! and E7*' for one-soliton solution and 7= 0.05

n Number of iterations Ent! Ez*!

0 First 0.167 4812x 1074
Second 4208 x 103 1.293 x 103
Third 9.537x 10~ 1073 x10°¢

1 First 0.168 4481 x 104
Second 4.262x10°° 1.192x 103
Third 1.073x10°° 1.252x10°°

4 First 0.171 5.097 x 10~
Second 5.037x 1077 1419 x 1073

Third 1.132x10°° 1371x10°°
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LEmMMAa 1 [7, Lemma 2.1]. Let £>0 be a given constant, then there exists a
constant ¢, depending only on ¢ such that

dy(x)|?
max [y(x)*<e H——c_l—x— L2+C|| y(x)3,,

where y(x)e L [0, 1].

LemMa 2 [8, Lemma4.2]. For any h, there exists such operator I,:
LY L,[0,1] that if y"e L’ and y(x)=1,y" then y(x,)= y"(x;) and y(x) is
analytic, I, commutes with shifts and differences, and there is estimate

(2, e

dax™ dx™

J—1 1

L'z’={y”:h Y Iyl <o, y8=y’}=0}, Dy =3 (1= ¥
j=1

<D Ml <

3
Ly

where

LemMMma 3. Let £¢>0 be a given constant, then there exists a constant c, depending
only on ¢ such that

™ o <efful +caflul.

Proof. 1t is immediate by Lemma ! and Lemma 2.

THEOREM 4. Assume that uy(x)e€ H', then there are estimates for the solution of
the difference scheme (3.4)-(3.7)

u”]l < es, luill < cq, "l o = cs.

Proof. Taking GE%'Y2=0, fE317=0, ,=2, ap,;s1p=—1, and Q;*'=

3lu7*'|* in the conservation laws (2.9) and (2.10), we have for the solution of the
difference scheme (3.4)-(3.7)

a1 = [ju®]1?, (A.1)
J—1 J—1

o [ W SR 2 S 17 R (17 K B S 174 (A2)
= j=1

j=1 Jj=

Without loss of generality, we can assume that 4 is chosen so small that there are

duy(x)
dx

b
Ly

1% < 2oz, N3l <2

BT <2 [ Cugl)1* de =2 gl
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Thus, it follows from (A.1) and (A.2) that

™ <2 lug(x)]l L, =c3, (A.3)
2 J—1
Jlui“HzQH% + 2 ug(xX e, + A _Z 14, (A4)

From Lemma 3 and (A.3), we have

J—1 J—1
h ur_z+14< max u{:+12_h ur_:+12
Y |\1<,<1~1|f I > lur

j=1 Jj=1

<clelluy ™+ e w11

<2c3[e it 2 + w2,

where ¢ is chosen such that ¢-c;<1. On combining this with (A.3) and (A.4), we
deduce that

2

dhig(x)

IIU'}“|I2<2[4

+2||u0(x)||24+2c‘3‘c§]5ci. (A.5)

Ly
Thus, it follows from Lemma 3, (A.3), and (A.5) that

lullo < es.

THEOREM 5. Assume uo(x)e H'. If we use iterative initial value u}*'® =u,
1< j<J~ 1 and the step size of space and time satisfy

1
Ve

where c¢q is a positive constant depending on cs. Then the Seidel-type iterative
algorithm (3.17) is convergent and solution of the difference scheme is unique.

Proof. Let e/ *'® =uf*1 —y7* ') From (3.4) and (3.17) we have

h< 1< ¢ M

Ag}l:ll(.)‘)+B;l+1(5)§?+1(S+1)+A8;lj-11(s+1)=H;l+l(s), 1 <j<.]— 1’ (A6)
where
Hr+ 1 = _% W ) (| O g1,
Now, we prove by contradiction that

max |e" 1D < max el T 1), (A7)
1<j<s—1 7 i 7

where 0 < 4 < 1, independing on s.
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Assume (A.7) to be false, then for any 1> ¢ >0 there exists s, >0 such that

|n+l(so+1)|_ max |8;+l(s°+l)!>(1—8) max |8;|+1(s0)|’ (AS)
IlsjsJ—1 1€j<J-1

and it holds for s < s,:

max [¢7TPDI <5 max [t ). (A.9)
1<jss—1 7 1<jgs—1 7
Thus, (A.6) yields
I "+1(SO)| | n+l(so)| |8n+l(xo+l)|
|Bn+1(s0)| JO+1 jo—1
Jo \l n+l(so+1)| | n+1(so+1)‘ |8,7+1(s0+1)|
Jo
|Hn+l(so)| 1
| n+1(s0+1)| ’ _8+A;
ie.,
|H17+1(s0)|
max g7t 1o+ D) 2 ) A.10
1<j<d-1 & < |BiY 10— 4 — 4 - (1/(1 —¢)) (A.10)
From u}*'®@ =1y} and (A.9), we have
max |70 max Jutt'—ut,  s<s,. (A.11)
1<j<i—1 7 1<jg7—1 7 1
It follows from the Theorem 4 that
le7 101K 25, <5, (A.12)

Considering 4 < 1/\/3 ¢s, we have estimate

1

1—¢
2 h2 2 T T
1_+_ 1 _ n+1(s0) -
\/ h“l: 3 (T + )] W (1 =%

> /1_’_ T T
- an’  2h* 2h*(1—¢)

Choosing t such that

1 L\ 177
< —(1+—)| -5 :
<o (1) o) w13

B0 — g — 4.
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where ¢, is a positive constant, which can be definite in the sequel, we get
n+ 1(s0) 1
BT —A— A ——2>cot (A.14)
1—¢

In view of the Theorem 4 and (A.12), it holds
IH;’O“(““l < 3c§r|aj’.:)+“’°)l. (A.15)

Combining (A.10), (A.14), and (A.15), we have

2

3c
max |ef MO <=2 max  [¢f t'W), (A.16)
1<j<i—1 Co l<j<J-1

¢o can be chosen such that

3¢
a3 Y (A.17)
Co
Thus,
max [ef P10t <(1—¢) max [gf IO
1<j<s-1 1< <I—1

Since this leads to a contradiction, then (A.7) is true. Therefore, the iterative
algorithm (3.17) is convergent and the solution is unique.

Combining (A.13) and (A.17), we know that t should satisfy the following
condition,

1< ¢ h2

where ¢4 is a constant depending on c;.
From the Theorem 5, we known that 4 can be chosen big enough and the
restriction on 7 is serious in the iterative algorithm (3.17).
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